Facial Expression Recognition in Older Adults using Deep Machine Learning
نویسندگان
چکیده
Facial Expression Recognition is still one of the challenging fields in pattern recognition and machine learning science. Despite efforts made in developing various methods for this topic, existing approaches lack generalizability and almost all studies focus on more traditional hand-crafted features extraction to characterize facial expressions. Moreover, effective classifiers to model the spatial and temporary patterns embedded in facial expressions ignore the effects of facial attributes, such as age, on expression recognition even though research indicates that facial expression manifestation varies with ages. Although there are large amount of benchmark datasets available for the recognition of facial expressions, only few datasets contains faces of older adults. Consequently the current scientific literature has not exhausted this topic. Recently, deep learning methods have been attracting more and more researchers due to their great success in various computer vision tasks, mainly because they avoid a process of feature definition and extraction which is often very difficult due to the wide variability of the facial expressions. Based on the deep learning theory, a neural network for facial expression recognition in older adults is constructed by combining a Stacked Denoising Auto-Encoder method to pre-train the network and a supervised training that provides a fine-tuning adjustment of the network. For the supervised classification layer, the -class softmax classifier was implemented, where is the number of expressions to be recognized. The performance are evaluated on two benchmark datasets (FACES and Lifespan), that are the only ones that contain facial expressions of the elderly. The achieved results show the superiority of the proposed deep learning approach compared to the conventional non-deep learning based facial expression recognition methods used in this context.
منابع مشابه
Facial Expression Recognition Based on Structural Changes in Facial Skin
Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...
متن کاملFacial Expression Recognition Based on Anatomical Structure of Human Face
Automatic analysis of human facial expressions is one of the challenging problems in machine vision systems. It has many applications in human-computer interactions such as, social signal processing, social robots, deceit detection, interactive video and behavior monitoring. In this paper, we develop a new method for automatic facial expression recognition based on facial muscle anatomy and hum...
متن کاملFacial Expression Recognition Using Deep Belief Network
Emotional understanding and expression is a fundamental basis for human-computer interaction, and how to read the human mind through facial expression recognition technology has become a hot issue. Large dimension of image data, sample calibration difficulties, and small size training sample set make the efficient facial expression recognition task difficult. DBN (Deep Belief Network) achieves ...
متن کاملبهبود مدل تفکیککننده منیفلدهای غیرخطی بهمنظور بازشناسی چهره با یک تصویر از هر فرد
Manifold learning is a dimension reduction method for extracting nonlinear structures of high-dimensional data. Many methods have been introduced for this purpose. Most of these methods usually extract a global manifold for data. However, in many real-world problems, there is not only one global manifold, but also additional information about the objects is shared by a large number of manifolds...
متن کاملA COMPARATIVE ANALYSIS OF WAVELET-BASED FEMG SIGNAL DENOISING WITH THRESHOLD FUNCTIONS AND FACIAL EXPRESSION CLASSIFICATION USING SVM AND LSSVM
This work presents a technique for the analysis of Facial Electromyogram signal activities to classify five different facial expressions for Computer-Muscle Interfacing applications. Facial Electromyogram (FEMG) is a technique for recording the asynchronous activation of neuronal inside the face muscles with non-invasive electrodes. FEMG pattern recognition is a difficult task for the researche...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017